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Abstract

In this paper we provide solution of the Navier–Stokes equations for gaseous slip flow in long microchannels with a second-order
accurate slip boundary condition at the walls. The obtained solution is general enough to allow evaluation of various slip models pro-
posed in the literature. We compare our solution against the first-order accurate slip boundary condition and show that the solution has a
weak dependence on Reynolds number, which was neglected in the earlier theory. It is emphasized that first-order slip models do not
predict the ‘‘Knudsen paradox” (appearance of a minima in normalized volume flux at Knudsen number approximately unity), or a
change in curvature of centerline pressure at Knudsen numbers of 0.16. A comparison with Boltzmann’s solution suggests that the
derived solution agrees reasonably well up to Knudsen number approximately 5, which shows that the validity of Navier–Stokes to rar-
efied gases can possibly be increased by using a high order slip boundary condition and proper choice of the slip coefficients. This result is
significant from the perspective of numerical simulations of rarefied gases.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Study of flow through microchannels has gained interest
because of potential applications of microdevices in engi-
neering, medical, and other scientific areas. These devices
would invariably involve fluid flow and therefore a clear
understanding of microfluidics is imperative. The flow of
liquid in a microchannel is different from that of a gas in
the same microchannel (see, e.g., Gad-el-Hak [1]). Whereas
standard results usually apply with liquid flow, this is not
the case with gases: the most noticeable difference between
micro and macro domains with gases is presence of slip at
the solid interfaces. This can be seen by considering air flow
under standard conditions (k � 70 nm) through a 5 lm
channel which gives a Knudsen number, Kn (defined as
the mean free path of the gas, k, divided by the hydraulic
diameter) of 0.007 which is well within the slip regime
(10�3 < Kn < 10�1; Schaaf and Chambre [2]). The slip
velocity therefore needs to be properly specified in such
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analysis and simulations in order to obtain meaningful
results.

The Knudsen number is large if either the mean free
path of the gas is large or the characteristic dimension of
the channel is small. The former can be accomplished by
reducing the pressure in the channel, i.e., by working under
rarefied condition, whereas the latter can occur in microde-
vices. Rarefied gases, especially in the free-molecular
regime (Kn > 10), have been studied with interest to space
applications. The theory for free-molecular, and to some
extend the transition regime (10�1 < Kn < 10), is well
developed. On the other hand in microdevices, as illus-
trated by the above example, internal slip flow is expected
to be commonly encountered; the slip regime therefore
needs to be better understood and the present work per-
tains to this flow regime. The connection between rarefied
gases and gas flow through microdevices should be kept
in mind; because of this commonality, the validity of our
results extend to both micro and macro domains under
similar values of Knudsen and Reynolds numbers.

The theory for incompressible, isothermal laminar flow
in a macrochannel is well known due to the inherent
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Nomenclature

A cross-sectional of the channel (m2)
b empirical parameter (see Eq. (3))
C1 first-order slip coefficient
C2 second-order slip coefficient
cs speed of sound (m/s)
Dh hydraulic diameter of a channel ð¼ 4A

PerimeterÞ (m)
f friction factor (see Eq. (21))
H height of the channel (m)
Kn Knudsen number (=k/2H)
Kn0 Knudsen number at reference point z0

L channel length (m)
_m mass flux per unit depth (kg/m s)
n unit normal to the surface (=y/H)
p pressure (Pa)
p0 pressure at reference position z0 (Pa)
Q normalized volume flux (see Eq. (23))
R specific gas constant (J/kg K)
Re Reynolds number
T temperature (K)
u longitudinal velocity (m/s)
�u cross-section average velocity (m/s)
ug slip velocity at the wall (m/s)
uk longitudinal velocity at a distance k from the

wall (m/s)

t lateral component of velocity (m/s)
y lateral coordinate (m)
z streamwise coordinate (m)
z0 reference position (m)

Greek symbols

b non-dimensional constant (see Eq. (13))
v non-dimensional constant (see Eq. (14))
c pressure ratio across the channel
k mean free path of a gas (m)
l dynamic viscosity (kg/m s)
q density (kg/m3)
r tangential momentum accommodation factor
sw shear stress at the wall (kg/m s2)
R conductance of the channel (see Eq. (22))
f slip length (m)

Subscripts
g gas
s control surface (at a distance k/2 from the wall)
w wall
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simplicity of the problem. This is however not the case with
microchannels – the difficulty stems from the fact that the
flow is compressible and the slip at the walls has to be
appropriately modelled. Development of a comprehensive
theory, besides being of fundamental importance, will be
useful for benchmarking experimental and numerical
results; therefore, several attempts have already been made
in this direction. Perhaps the most successful to date is by
Arkilic et al. [3], who used a first-order slip model and per-
turbation method to solve the differential form of the
Navier–Stokes and continuity equations. Their solution
proceeds by first finding the lateral variation of streamwise
velocity, and subsequently, the lateral velocity and stream-
wise variation of pressure are obtained. The obtained solu-
tion is applicable to Mach and Reynolds numbers of order
epsilon (where epsilon denotes a sufficiently small number),
and Knudsen number of order unity. Karniadakis and Bes-
kok [4] used a higher order slip model but neglected the
inertial terms, to derive solutions for streamwise velocity
and pressure. Zohar et al. [5] also employed perturbation
method on differential form of the Navier–Stokes equa-
tions. They assumed accommodation coefficient to be
unity, Knudsen number of order 0.1, and neglected second
order terms in the velocity slip boundary condition. Weng
et al. [6] employed a high order slip model for flow in
microtubes and solved the differential form of the
Navier–Stokes equations along with continuity and equa-
tion of state for an ideal gas. They claimed applicability
of their model for the entire range of Knudsen number,
provided that the bulk velocity is negligible as compared
to sonic velocity of the gas. However, there are many
unknown coefficients in their slip model.

Besides the above approach of using an analytical solu-
tion starting from the Navier–Stokes equations, solution
starting from Boltzmann equations has been obtained. Cer-
cignani and Daneri [7] solved the linearized Boltzmann
equation under the assumption of a small pressure gradient
and isothermal condition. They used the Maxwell scatter-
ing kernel to describe the gas–wall interaction. As com-
pared to [7], the use of variational approach by
Cercignani et al. [8] leads to a slight improvement in
results. Sharipov [9] also solved the linearized Boltzmann
equation but used a different kernel to describe the gas–
wall interaction. Comparison of the results from these
analysis against experimental data showed a good agree-
ment for Kn < 1, and slight deviation beyond it [7]. Xue
and Fan [10] replaced Kn by a hyperbolic tangent function
of Kn in the expression for slip velocity, and compared pre-
dictions from their model against computations from direct
simulation Monte Carlo (DSMC). Pan et al. [11] investi-
gated the dependence of slip coefficient on wall tempera-
ture, wall speed, and mass, diameter and number density
of gas molecules for five gases, using DSMC, and found
the slip coefficient to be independent of all these parame-
ters. See Sharipov and Seleznev [12] for a recent review
on internal rarefied gas flows.



Table 1
Values of slip coefficients proposed in the literature

Source C1 C2 Remarks

Maxwell (1879) 1 0 Theoretical (see [15])
Schamberg (1947) 1 5p/12 Theoretical (see [4])
Chapman and Cowling (1952) �1 �0.5 Theoretical (see [13])
Albertoni et al. (1963) 1.1466 0 Theoretical (Pipe)
Deissler (1964) 1 1.6875 Theoretical (see [18])
Cercignani (1964) 1.1466 0.9756 Theoretical (see [18])
Sreekanth (1969) 1.1466 0.14 Experimental (Pipe)
Hsia and Domoto (1983) 1 0.5 See [4]
Mitsuya (1993) 1 2/9 See [13]
Pan et al. (1999) 1.125 0 Simulations (DSMC)

The values were obtained through theoretical considerations, DSMC
simulations, or experiments. The values of Albertoni et al. [20] and
Sreekanth [18] have been obtained for a circular geometry.
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The above literature survey suggests that either a first-
order slip model has been employed or there is little justi-
fication for the higher-order slip model used earlier in
deriving the solution of slip flow in microchannels. In this
paper, analytical solution of isothermal gas flow in micro-
channels with slip at the walls is presented, using a second-
order accurate slip model. The inertial term in the momen-
tum equation is retained in our analysis unlike some previ-
ous studies [3,4]. The treatment is general enough to allow
evaluation of the various slip models suggested in the liter-
ature [4,13], and to check the sensitivity of the results on
the numerical values of the slip coefficients. Our results
reduce to that of Arkilic et al. [3] upon neglecting the sec-
ond-order slip term, as expected. A more general analysis
such as the one employed here is expected to bring forth
new insights about the flow – the new results from the anal-
ysis are highlighted at appropriate places in the paper. As
mentioned above, the validity of these results extend to gas-
eous slip flow in both macro and micro domains provided
that the underlying assumptions of flow being fully devel-
oped, steady and isothermal are satisfied.

2. Review of slip models

The no-slip boundary condition is assumed to apply at
the solid-fluid interface under normal conditions. However,
it is well known that at high Knudsen number this condi-
tion is violated and the gas slips at the wall. See Sandeep
and Deshpande [14] for an interesting note on the no-slip
boundary condition.

Maxwell proposed the following approach to calculate
the slip velocity [15]. On a control surface, s, at a distance
of k/2, half of the molecules come from one mean free path
away from the surface with tangential velocity uk, and half
of the molecules are reflected from the surface. On the
assumption that a fraction r of the molecules are reflected
diffusively at the walls (i.e., their average tangential velocity
corresponds to that of the wall, uw), and the remaining
(1 � r) of the molecules are reflected specularly (i.e., with-
out a change of their impinging velocity uk), Maxwell
obtained the following expression on expanding uk using
Taylor series and retaining terms up to second order:

ug � uw ¼
2� r

r
Kn

ou
on

� �
s

þ Kn2

2

o
2u

on2

� �
s

� �
: ð1Þ

In the above equation, u stands for streamwise velocity,
subscripts g, w and s refer to gas, wall, and control surface
respectively, r is the tangential momentum accommoda-
tion factor (r = 1 and 0 for fully diffused and specular
surfaces, respectively), and n is the normal to the control
surface.

As a somewhat arbitrary extension of the above model,
Lam [16] suggested the following alternate form for ease of
calculations:

ug � uw ¼
2� r

r
Kn

1� bKn
ou
on

� �
s

� �
; ð2Þ
where b is an empirical parameter whose value can be
determined by DSMC simulations for various Knudsen
number regimes. This slip model (Eq. (2)) was later
exploited by Beskok and Karniadakis [17] and Karniadakis
and Beskok [4], to solve for gas flow at microscales. Beskok
and Karniadakis [17] determined the value b by a perturba-
tion expansion of the velocity field in terms of Kn and have
found that in the slip flow regime (Kn 6 0.1), second order
accuracy is obtained if b is chosen as:

b ¼ 1

2

u00o
u0o

� �
s

; ð3Þ

where prime denotes derivative of tangential velocity in the
direction normal to the surface, and the subscript ‘‘o”
shows no-slip level of approximation. Using this model,
Beskok and Karniadakis [17] have provided some results
for transition and free-molecular regimes. As mentioned
above, Xue and Fan [10] replaced Kn by tanh(Kn) and
neglected the second order term in Eq. (1), to calculate
their slip velocity.

Sreekanth [18] suggested the following general form of
second-order slip model:

ug � uw ¼ �C1k
ou
oy

� �
w

� C2k
2 o2u

oy2

� �
w

;

which can be written as

ug � uw ¼ �2C1Kn
ou
on

� �
w

� 4C2Kn2 o
2u

on2

� �
w

: ð4Þ

This is essentially of the same form as Eq. (1) with the
important difference that there are two independent coeffi-
cients unlike a single coefficient ((2 � r)/r) in Eq. (1) (the
factor of 2 and 4 comes into picture because of the defini-
tion of Knudsen number as k/2H). Although there seems to
be concensus on the validity of Eq. (4), there is no general
agreement on the values of the slip coefficients C1 and C2.
Table 1 summarizes the various values of the coefficients as
predicted by analysis and experimental data.

The slip model (Eq. (4)) has been adopted in the present
work, because it allows comparison of results from the
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present theory for various values of C1 and C2, against
available experimental data. Hence, different slip models
can be compared. In this paper, we refer the slip model
to be of first order if C2 = 0; the slip model is of second
order when both C1 and C2 are non-zero. Also uw = 0 in
our case.

According to Kennard [15], the slip length is obtained
by extending the gradient at the wall to the point of zero
velocity. The slip length can be determined from:

ug ¼ f
ou
oy
;

which gives

f ¼ C1KnDh;

for first order model, where f is the slip length, and Dh is
the hydraulic diameter of the channel. Note Dh = 2H in
our case, where H is the distance between the two plates.

3. Solution for gas flow in microchannels

3.1. Governing equations

In this paper, we follow the approach of Sreekanth [18]
to analyze gaseous slip flow in a channel under slip flow
condition. The following assumptions are involved in this
procedure:

� The flow is steady, two-dimensional and locally fully
developed.
� The flow conditions are isothermal.
� The channel is long, and the entry and exit effects are

negligible.
� The viscous compressive stresses are negligible.

Under the above assumptions, the velocity profile can be
approximated by a parabola while the density (or pressure)
is a function of streamwise coordinate only. The assump-
tion of a parabolic velocity profile is shown to be true by
a vast body of analysis, and experimental and numerical
data available in the literature (Arkilic et al. [3], Pan
et al. [11], Beskok and Karniadakis [17], Xue et al. [22],
Agrawal et al. [23], Agrawal and Agrawal [24]). Similarly,
the flow conditions will be close to isothermal, if the heat
generated due to expansion of the gas and viscous dissipa-
tion is properly mitigated, or a good heat conductor (exam-
ple silicon) is used for fabricating the microchannels [4].

The momentum balance for the case of compressible
flow on a finite elemental volume between two cross sec-
tions of a channel with axial length dz is given by [18]

�Adp � 2Asw

H
dz ¼ d

Z
A

qu2dA
� �

; ð5Þ

where p is pressure, and A is the cross-sectional area of the
channel. It is well known (see example, Schaaf and Cham-
bre [2], Deissler [19]) that, in the slip regime the Navier–
Stokes equations are better than the Burnett equation
and thirteenth-order moment equations. The caveat how-
ever is that, the equations are accurate to order Knudsen
number whereas the boundary conditions have a higher
order of accuracy in terms of Knudsen number (Eq. (4));
this is done with the intention of extending the applicability
of the obtained solutions to larger values of Knudsen num-
bers. The present analysis takes into account the change in
axial momentum, which is usually neglected.

Besides Navier–Stokes, the ideal gas law

p ¼ qRT ð6Þ

and

Kn p ¼ constant; ð7Þ

in a microchannel, will be used in the analysis. Here R is
the specific gas constant and T is the absolute temperature.

3.2. Solution procedure

The essential steps for obtaining the solutions are as
follows:

1. Assume a slip model (Eq. (4)) and evaluate the coeffi-
cients of the parabolic velocity profile in terms of other
(known and unknown) variables. Note that the analysis
can be undertaken for other slip models as well; we how-
ever choose Eq. (4) because (as mentioned above) of its
general acceptability and because it allows comparison
of the values of slip-coefficients from various sources
in the most straightforward manner.

2. Substitute the velocity profile in the integral form of
momentum equation (Eq. (5)), and solve for pressure.

3. Obtain the streamwise variation of longitudinal velocity
using Eqs. (6) and (9).

4. Solve for the lateral velocity by invoking the continuity
equation.

5. Calculate the mass flux, friction factor, conductance and
other integral and engineering parameters of interest
knowing the pressure and velocity fields.

The three coefficients of the parabola can be determined
using Eq. (4), symmetry with respect to the centerline, and
the local mean velocity. The velocity profile therefore
becomes

uðy; zÞ ¼ �uðzÞ
y
H �

y
H

� �2 þ 2C1Knþ 8C2Kn2

1=6þ 2C1Knþ 8C2Kn2
; ð8Þ

where y is the lateral coordinate (= 0,H at the lower and
upper walls respectively), z is the longitudinal coordinate,
and �u is the cross-section averaged longitudinal velocity.
Beskok and Karniadakis [17] have given the analytical
velocity profile which has the same form as Eq. (8). The
mean velocity is a function of the streamwise coordinate
and is related to the Reynolds number through

Re ¼ q�uDh

l
: ð9Þ
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The numerator in Eq. (9) is equal to mass flux per unit
depth and therefore the Reynolds number is invariant of
streamwise location, which leads to some simplification in
the analysis.

The slip velocity

ug ¼ �u
2C1Knþ 8C2Kn2

1=6þ 2C1Knþ 8C2Kn2
;

indeed goes to zero as Kn ? 0. The contribution of second
order term (i.e., C2 6¼ 0) to slip velocity increases at higher
Kn, which suggests that they should be retained at large
values of Knudsen numbers (the approximate value be-
yond which they should be retained will be obvious from
Fig. 4 presented below). It is apparent from the above
equation that the difference in velocities between the center-
line and walls decreases at large Knudsen numbers, and
therefore, the velocity profile appears ‘flat’ in such cases.
Because Knudsen number is a function of streamwise loca-
tion (Eq. (7)), the slip velocity is also a function of stream-
wise location; specifying the correct slip velocity is an
important source of difficulty in numerical simulations
and analytical treatment of such flows, as noted earlier.
For example, Cercignani and Daneri [7] seem to have ne-
glected the streamwise variation of slip velocity in their
analysis.

The shear stress at the wall for the above velocity profile
is given by

sw ¼
3Rel2

qH 2ð1þ 12C1Knþ 48C2Kn2Þ
: ð10Þ

We can show that the slip length for the second order sys-
tem becomes [15]

f ¼ ½C1Knþ 4C2Kn2�Dh; ð11Þ

where, again, the second order term becomes important at
high Knudsen numbers. Although Eq. (11) is a direct
extension of the previous work, we believe that it has not
been derived earlier for the second order system.
3.3. Solution for pressure and velocities

After substituting for u and sw from Eqs. (8) and (10),
respectively, Eq. (5) can be integrated to obtain an expres-
sion for pressure in terms of pressure (p0) at some reference
position z0 and the corresponding Knudsen number (Kn0).
The following expression for pressure is obtained:

p
p0

� �2

�1þ24C1Kn0

p
p0

�1

� �
þ96C2Kn2

0 log
p
p0

� �

þ2Re2bv 12C1Kn0

p0

p
�1

� �
þ24C2Kn2

0

p0

p

� �2

�1

" #
� log

p
p0

� �( )

¼�96Reb
z� z0

Dh
;

ð12Þ
where

b ¼ l2RT

p2
0D2

h

; ð13Þ

v¼ 1

A

Z
A

u
�u

� 	2

dA

¼
1=30þ 2

3
C1Knþ 8

3
C2Kn2þ 4C2

1Kn2þ 32C1C2Kn3þ 64C2
2Kn4

ð1=6þ 2C1Knþ 8C2Kn2Þ2

" #
:

ð14Þ
Note that an assumption of constant v was made during

integration of Eq. (5) in order to simplify the algebra with-
out compromising the accuracy of the solution [18]. It can
be easily verified that v lies between 1 and 1.17 over the
range of Knudsen number from 0.001 to 10, and the max-
imum difference in pressure at any point with the two
extreme values of v is less than 10�3%.

The variation of mean velocity can now be obtained
using Eqs. (6) and (9) as:

�uðzÞ ¼ RelRT
pðzÞDh

; ð15Þ

which upon using Eq. (8) gives the longitudinal velocity as

uðy; zÞ ¼ RelRT
pðzÞDh

y=H � ðy=HÞ2 þ 2C1KnðzÞ þ 8C2Kn2ðzÞ
1=6þ 2C1KnðzÞ þ 8C2Kn2ðzÞ

 !
:

ð16Þ
Note that p(z) can be substituted from Eq. (12) in the

above equations. Fig. 1a shows the longitudinal velocity
for Kn0 = 0.0668 and Re = 0.0.0979. (Unless noted other-
wise, all results in this paper have been plotted for
C1 = 1.1466 and C2 = 0.9756 and L = 100Dh where L is
the length of the channel). It should be noted that the var-
iation of Knudsen number along the length of the channel
has been taken into account in the above expression.

The lateral component of velocity (t) is obtained by
substituting the expressions for q(z) and u(y,z) (using
Eqs. (6), (12) and (16)) into the two-dimensional continuity
equation:

oðquÞ
oz
þ oðqtÞ

oy
¼ 0: ð17Þ

The resulting expression for lateral velocity is

tðy; zÞ ¼ 12C1KnðzÞþ 96C2Kn2ðzÞ
1þ 12C1KnðzÞþ 48C2Kn2ðzÞ

RelRT
Dh

� �
1

p2ðzÞ

� dp
dz

y 1�
3 y

H� 2ð y
H Þ

2þ 12C1KnðzÞþ 48C2ðKnðzÞÞ2

1þ 12C1KnðzÞþ 48C2ðKnðzÞÞ2

 !( )
:

ð18Þ
Fig. 1b shows the variation of lateral velocity for the same
parameters as in Fig. 1a. It can be readily verified by com-
paring Fig. 1a with b that the magnitude of lateral velocity
is substantially smaller (about 3 orders of magnitude for a
typical microchannel) than the centerline velocity. The
analysis of Arkilic et al. [3] also predicts a much smaller
lateral velocity (of order epsilon) as compared to the
centerline velocity.



Fig. 1. Variation of (a) longitudinal and (b) lateral velocities as predicted by the theory.
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3.4. Solution for integral parameters

In this section, results for some integral and engineering
parameters using the results from the previous section are
provided. The mass flux per unit depth through the channel
is

_m ¼
Z H

0

qudy;

which can be found after substituting the expressions of u

and q. The expression for mass flux is simply,

_m ¼ Rel
2
: ð19Þ

However, in most cases, the mass flux for a prescribed
pressure ratio needs to be determined. Using Eq. (12), a
quadratic equation in Reynolds number is obtained; it is
found that this quadratic equation has only one positive
solution. The mass flow rate in terms of pressure ratio, c,
is given by

_m ¼ �a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a1a3

p
2a1

" #
l
2
; ð20Þ

where,

a1 ¼ 2bv 12C1Kn0ðc� 1Þ þ 24C2Kn2
0ðc2 � 1Þ þ log c

� �
,

a2 ¼ 48bL=H , and
a3 ¼ ð 1

c2 � 1Þ þ 24C1Kn0ð1c � 1Þ � 96C2Kn2
0 logðcÞ.

For the flow of compressible gases in channels, the flow
acceleration effect caused by the change of density on the
total pressure drop must be considered, based on the
momentum theorem, the friction factor while gas flows in
a straight constant section is calculated as follows [26]:

dp
dz
¼ � f

Dh

q�u2

2
þ q�u

d�u
dz
:
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ig. 3. Comparison of mass flux against experimental data of Arkilic et al.
], for outlet Knudsen number of 0.155.
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Integrating across the length of the channel and using
the perfect gas equation of state, we obtain:

f ¼ c2 � 1

c2

� �
p2

0D2
h

4ð _mÞ2RT
þ log c

" #
2Dh

L
: ð21Þ

Conductance (R) of the microchannel can be defined as

. ¼ _m
Dp

;

(where Dp is the pressure drop across the channel) which
upon using Eq. (19) and the expression for c yields

. ¼ c
c� 1

� �
Rel
2p0

: ð22Þ

Conductance measurements are commonly reported in
the literature; see, e.g., Tison [27].

4. Discussion

The purpose of this section is to show consistency
between the obtained and previous results and to highlight
new insights from the analysis.

4.1. Validation of the theory

Fig. 2 presents comparison of pressure from Eq. (12)
against the experimental data of Pong et al. [25]. The mea-
surements by [25] were made by embedding measurement
ports in a microchannel through which pressure transduc-
ers were mounted. The working gas was nitrogen and the
outlet Knudsen number was 0.059. The comparison
between present theory and data is good.

Fig. 3 presents comparison of mass flux versus pressure
ratio through the microchannel obtained from Eq. (20)
z/L
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Fig. 2. Comparison of pressure against experimental data of Pong et al.
[25], for outlet Knudsen number of 0.059.
F
[3
against the experimental data of Arkilic et al. [3] at outlet
Knudsen number of 0.155. The comparison between the
theory and data is again good. Further, the second-order
model is clearly an improvement over the first-order model.

Fig. 4 presents comparison of normalized volume flux
versus Knudsen number through the microchannel
obtained from the present theory against the analysis of
Cercignani and Daneri [7] and Cercignani et al. [8]. Also
shown is the experimental data of Dong for five different
gases, obtained from Ref. [7]. The normalized volume flux
is obtained as

Q ¼
�qcs

R H
0

Udy

H 2ðdp=dzÞ
; ð23Þ
Kn

Q

10 -3 10 -2 10 -1 10 0 10 1 10 2
10 0

101

10 2

Experimental Data (byDong)
Cercignanietal. (2004)
Cercignani & Daneri (1963)
Present theory (C1=1, C2=0)
Present theory (C1=1.4, C2=0.7)
Present theory (C1=1.875, C2=0.05)

Fig. 4. Comparison of normalized volume flux versus Knudsen number,
against the theoretical results obtained by Cercignani et al. [7,8].
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where cs is the speed of sound. Our expression with C1 = 1
and C2 = 0 agrees well with Cercignani et al. [7,8] for Kn less
than about 0.1, which corresponds roughly to the end of the
slip flow regime. The comparison can however be improved
by choosing C2 > 0, and changing the value of C1 slightly,
i.e., by using any of the values of C2 given in Table 1 (not
shown; to avoid overcrowding the figure). In particular,
the comparison between the two theories is excellent till
Kn � 1 with C1 = 1.4 and C2 = 0.7. Similarly, reasonable
comparison up to Kn = 5 is obtained by choosing
C1 = 1.875 and C2 = 0.05. Sreekanth [18] had noted that
comparison between his experimental data and the theory
derived by him improves by changing the values of C1

and C2, from 1 and 0 for Kn 6 0.03, to 1.1466 and 0 for
0:03 < Kn < 0:13, and to 1.1466 and 0.14 for Kn P 0.13.
This observation justifies to some extend, using different
values of C1 and C2 in different Knudsen number regimes.

The values of C1 and C2 employed above are artificial, in
the sense that these values have not been reported earlier.
However, on using these values, Fig. 4 reveals that results
from theory based on continuum assumptions can be
matched with that from the Boltzmann equation for a suf-
ficiently large range of Knudsen number; this result is
important from the point-of-view of numerical simulation
of rarefied gases. In other words, Fig. 4 suggests that the-
ory based on continuum assumptions in conjunction with
a higher order boundary condition and an appropriate
choice of the slip coefficients can be employed even at high
Knudsen numbers, when the use of continuum assump-
tions are themselves questionable. Further evidence and
similar results in other geometries, will open the exciting
possibility of studying a large part of rarefied gases with
the Navier–Stokes equations itself, for which simulation
and analysis tools are perhaps better developed than with
the Boltzmann equation.

The results in this section show that the present theory is
consistent with previous experimental data and theoretical
analysis. Further, they underscore the utility of employing
a higher order slip model for the analysis of rarefied gases.
In the following section, we show that our expression for
pressure and velocity will reduce to Arkilic et al. [3] upon
neglecting the second order term. This further establishes
that our results are consistent, rather more general, than
the existing models.
4.2. Reduction to first order slip expression

On differentiating Eq. (12) twice, with respect to z and
substituting C2 = 0, we obtain:

o
2

oz2

p
p0

� �2

þ 24C1Kn0

p0

o
2p

oz2

þ 2Re2bv
24C1Knþ 1

p2

op
oz

� �2

� 12C1Knþ 1

p
o2p
oz2

 !

¼ 0; ð24Þ
which can be compared to the corresponding expression by
Arkilic et al. [3]

o2

oz2

p
p0

� �2

þ 24C1Kn0

p0

o2p
oz2
¼ 0: ð25Þ

(Note that the coefficient of o
2p=oz2 in Eq. (25) has changed

from that in Ref. [3] because of our definition of Kn as
k/2H instead of k/H used therein.) The extra term in Eq.
(24) – 2Re2bvfð24C1Knþ1

p2 Þðop
oz Þ

2 � ð12C1Knþ1
p Þ o2p

oz2g, appears be-
cause the entire analysis is second order accurate; the mag-
nitude of this term is dependent on the square of Reynolds
number. However, if Reynolds and Knudsen numbers are
of order epsilon and unity, respectively, the coefficient of
the extra term (i.e., 2Re2bv) is epsilon square (this can be
easily verified – b lies between 0.1 and 10 while v is of order
unity as noted earlier), and therefore it is substantially
smaller than the other terms. That is, under the assump-
tions made by Arkilic et al. [3], the magnitude of the extra
term is negligible, and Eq. (24) indeed reduces to Eq. (25).
(The negligible difference between the two equations under
the above assumption is illustrated through a specific
example in Fig. 5a.) However, in general, pressure in
microchannel is dependent on both Reynolds and Knudsen
numbers, with a more dominant effect of the latter non-
dimensional number. The dependence on Reynolds num-
ber was not reported earlier because the inertial terms were
neglected in the previous analysis [3,4]. It is however ex-
pected that this term will become important in rarefied
gas flow in macrochannels [18].

An analysis similar to pressure can be performed for
velocity, and a reduction to first order expression can be
demonstrated upon neglecting the extra term given above.
The good agreement with Ref. [3] is demonstrated for a
particular case in Fig. 5b. This shows that, because our
expression can be reduced to Arkilic et al. [3], which
employs only a first-order slip boundary condition and is
accurate only to order epsilon (first term in the perturba-
tion analysis), our results can be considered to be more
general.
4.3. Comparison of first-order and second-order slip models

The effect of rarefaction on pressure distribution was
assessed by varying the Knudsen number [4]. Fig. 6a shows
a decrease in non-linearity with an increase in Knudsen
number up to Kn � 0.16. At Kn = 0.16, the pressure distri-
bution becomes linear, and beyond it, the curvature
changes from convex with respect to the origin, to concave.
The curvature increases between Kn = 0.16 and Kn = 3.34
before decreasing. Eq. (12) further suggests that at very
large Knudsen numbers, pressure again becomes almost
linear, in agreement with the limiting case of free-molecular
flows; however, the validity of the analysis is questionable
beyond Kn of order unity, because the continuum assump-
tion used in derivation of Navier–Stokes equations is per-
haps not valid.
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An interesting comparison for pressure can be made
against result from first order theory which fails to show
a change in curvature with Knudsen number (Fig. 6b). This
motivated us to derive the condition at which the curvature
will go to zero as

1

p2
0

� 48C2Kn2
0

p2
þ Re2bv

24C1Kn0p0

p3
þ 1

� �
¼ 0: ð26Þ

The above equation was obtained by differentiating Eq.
(12) twice with respect to z and substituting o2p=oz2 ¼ 0.
The only way to satisfy Eq. (26) is to have C2 > 0 (the po-
sitive sign before the first and third terms makes these
terms positive, and the equation can not go to zero without
an equal and opposite contribution from the second term).
It is noted that all the values of C2 suggested in Table 1 are
positive. In other words, a first order analysis (with C2 = 0)
will not show a change in curvature for pressure. A change
in curvature has been seen in the numerical simulations of
Nie et al. [28] at a comparable Knudsen number (= 0.194).

On plotting the volume flux through a capillary against
the mean pressure driving the flow, Knudsen found a pecu-
liar behaviour. The volume flux first decreases with an
increase in mean pressure, before increasing. In other
words, there is a minima in volume flux, which is rather
paradoxical, and is referred to as the ‘‘Knudsen’s para-
dox”. Subsequent experiments have confirmed this obser-
vation and several theoretical attempts have been made
to explain the phenomena. Note however that the mass flux
versus Knudsen number will not show any such minima.

The interest here is in comparing the first and second
order theories in predicting this paradoxical behaviour.
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Fig. 4 shows a minima in volume flux with the second order
analysis, but not with the first order analysis. In order
words, the volume flux increases monotonically with mean
pressure when C2 = 0, irrespective of the value of C1. The
result is significant in that it shows that a slip model has
to be at least second order accurate before the Knudsen’s
minima will be observed; conversely, a model which cap-
tures the above minima would be at least second order
accurate.

5. Conclusions

An analytical study of gas flow through microchannels
has been presented in this paper. The analysis employs inte-
gral form of the Navier–Stokes equations which are
assumed to be valid in the slip-flow regime, and a sec-
ond-order slip model was used to compute the slip velocity.
The exact expressions for pressure and velocities are
derived for this important class of flows. The derived
expressions are in terms of the slip coefficients; comparison
of results for predicted slip coefficients against experimen-
tal data, allows evaluation of different slip models pro-
posed in the literature. These results are also applicable
to rarefied gas in a macrochannel.

The theory is validated against experimental data avail-
able in the literature. We also show that the prediction
from the theory using standard values of the slip coeffi-
cients compares well against Cercignani’s linearized Boltz-
mann equation based calculations till Knudsen number of
0.1, which corresponds to the limit of the slip flow regime.
However, the comparison between the two theories can be
improved by tuning the values of the slip coefficients. We
have been able to demonstrate agreement between results
from Navier–Stokes and Boltzmann equations up to
Knudsen number of around five for flow in a channel; at
such high Knudsen numbers the former equation is nor-
mally considered not applicable.

The study documents the variation of pressure and
velocity in the channel for different values of Knudsen
number. A peculiar behaviour – change in curvature of
pressure versus the streamwise coordinate at high Knudsen
numbers is observed and explained for the first time. On
plotting the normalized volume flux versus Knudsen
number, the presence of Knudsen’s minima is correctly pre-
dicted by the results, which is another important validation
test for a new theory. Finally, some important differences
in the prediction from first-order and second-order analysis
are pointed out – change in curvature of pressure and
Knudsen’s minima can only be predicted with the higher
order model.

Because of the difficulty in making precise measure-
ments, simulation should be the more commonly used
approach to study gas flows through microchannels.
Importance of our results lies in the fact that they suggest:
first, Navier–Stokes equations along with second order slip
model and appropriate coefficients can be used for simulat-
ing a sufficiently large range of Knudsen number, and sec-
ond, any simulation which wants to capture behaviour of
pressure and volume flux correctly, should employ at least
second order accurate boundary condition.
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